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Two spatially homogeneous line elements, representing two inequivalent solutions to the Einstein-Maxwell 
equations, are known at present. The relationship between the two line elements is pointed out and discussed 
briefly here. 

TH R E E years ago, the author derived a spatially 
homogeneous solution to the Einstein-Maxwell 

equations. The line element associated with the solution, 
Eq. (4.10) in the published work,1 is 
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Two independent constants appear in (1), b\ and either 
b2 or b% ( = l/b2), and they provide an intrinsic parametri-
zation of the solution.2 For the solution represented by 
the line element (1), /=constant hypersurfaces are 
metrically Euclidean with disposable topology, and the 
fundamental Rainich geometry scalar invariant a is 
identically constant, i.e., independent of the time co­
ordinate /. If we specialize to the case ^2=^3= ± 1 , then 
the line element (1) reduces to a form symmetrical with 
respect to rotations around the #1 axis, namely, 
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Without reference to the form (1), Brill3 has recently 
published a spatially homogeneous solution to the 
Einstein-Maxwell equations. By combining Brill's Eqs. 
B( l ) , B(2), and B(20),3 his line element is given by 
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1 G. Rosen, J. Math. Phys. 3, 313 (1962). 
2 Interest has recently been attached to solutions which may be 

continued analytically through spurious singularities (due to a 
singularity in the coordinate system) to give qualitatively different 
space-time geometries [for example, see C. W. Misner, J. Math. 
Phys. 4,924 (1963)]. The temporal singularities in the line element 
(1), singularities appearing at t—nir with n an integer, are however 
intrinsic to the geometry (Ref. 1). From an initial instant of 
coordinate time t = tQ such that (n — l)ir<h<nir, the geometrically 
singular state at t—mr is reached in a finite duration of proper time 
if n is even (odd) and 62 is positive (negative), representing an 
unstable world with a finite proper lifetime, while on the other 
hand, the geometrically singular state is not reached in a finite 
duration of proper time if n is odd (even) and b% is positive (nega­
tive), representing a stable world with an infinite proper lifetime. 
No analytic continuation through a singularity to a new, qualita­
tively different, space-time geometry of physical interest is possible 
here. 

3 D. R. Brill, Phys. Rev. 133, B845 (1964). Equations numbered 
with a B are found in this paper. 

where <rXy <ry, az are Cartan differentials for the spatial 
coordinates in a 3-dimensional spherical space, satisfying 
conditions B(3) 

d(r2=axA(Ty and cyclically, (4) 

A and B in (3) are certain algebraic functions of t", and 
Bo is a constant. For the solution represented by the line 
element (2), /"=constant hypersurfaces are 3-spheres 
metrically and therefore topologically, and the funda­
mental Rainich geometry scalar invariant a depends on 
the time coordinate t". 

We may establish a relationship between the line 
elements (2) and (3) by letting the radius of the spatial 
3-spheres associated with (3) increase without bound, so 
that the spatial part of (3) becomes Euclidean, like the 
spatial part of (2). First we renormalize the Cartan 
differentials ax, ay, az with a change of scale, introducing 
a constant reference radius for the spatial 3-spheres, say 
Ro, by means of the scale transformation: ax—^ax/R0, 
<jy —•> ay/Ro, (TZ —> <rg/Ro- Under the scale transformation, 
we have A -^R0Ay B—>RoB, Bo-^RoBo in order for 
the line element (3) to remain invariant. Also, the 
conditions (4) become 

d<xz= (l/Ro)ax A cry (5) 

and cyclically. Then, by letting R0 increase without 
bound, (5) gives Cartan's conditions for a Euclidean 
spatial metric 

dcrx=d<Tv=daz=0 (6) 

and the line elements (2) and (3) are found to be equiva 
lent by putting 
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in which Co and Do are extra constants. Thus, from (2) 
we obtain the algebraic functions of /" in (3), 
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The latter expressions have the same algebraic form as 
Brill's Eqs. B(21) and B(22), differing only with regard 
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to constants of integration.4 By making obvious scale 
transformations, B0, Co, and D0 may be eliminated from 
the line element, bx surviving to parametrize the solution. 

Hence, the line element (2), representing a solution 
which is obtained either by specializing the author's line 
element (1) or by specializing Brill's line element (3), is 
common to both spatially homogeneous solutions to the 
Einstein-Maxwell equations, even though the two solu-

4 The difference in the constants of integration is mainly due 
to the limiting procedure Ro-±so, but also due in part to the fact 
that B(21) is not the general solution of the nonlinear total 
differential equation 

d?B/dt"2 = B<?/B* 

supplemented with the initial condition B = BQ at t"—W, the 
general solution being B2 = Bo2+2kBo(t''-to") + (l+k>)(tf,--to'f)2 

with k a new and free constant of integration; Eq. B(21), the 
particular solution with k = 0, is not as general as it ought to be. 

INTRODUCTION 

TH E origin of the light elements H2, Li, Be, and B 
has long been a puzzle to cosmologists.1'2 I t has 

been suggested that they were produced by spallation 
reactions2 on heavier elements. A reasonable such model 
was proposed by Fowler, Greenstein, and Hoyle3: 
Energetic solar protons spallated the light isotopes in 
solid bodies, and neutrons, simultaneously produced, 

1 R. A. Alpher and R. C. Herman, Rev. Mod. Phys. 22, 153 
(1950). 

2 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, 
Rev. Mod. Phys. 29, 547 (1957); W. A. Fowler, G. R. Burbidge, 
and E. M. Burbidge, Astrophys. J. Suppl. 2,167 (1955). S. Bashkin 
and D. C. Peaslee, Astrophys. J. 134, 981 (1961). 

3 W. A. Fowler, J. L. Greenstein, and F. Hoyle, Geophys. J. 6, 
148 (1962)—hereafter referred to as FGH; Am. J. Phys. 29, 
393(1961). 

tions are generally inequivalent. On the one hand, the 
author's line element (1) represents a more general 
solution that is not necessarily symmetrical with respect 
to rotations about a preferred axis (the xx axis). On the 
other hand, Brill's line element (3) represents a more 
general solution that is not necessarily Euclidean in the 
hypersurfaces of constant time, but symmetrical with 
respect to rotations about a preferred axis (the z axis). 
The fact that the two spatially homogeneous solutions 
were obtained originally from very different formula­
tions of the Einstein-Maxwell equations, using very 
different integration procedures, illustrates the value of 
our having and studying alternative formulations of 
field equations in general relativity, such as the Rainich 
and Cartan formulations of the Einstein-Maxwell 
equations. 

bathed the resulting nuclei, tending to create the ob­
served abundances. 

The astrophysical setting posited by FGH is also 
assumed here: A rather cool protosun extremely active 
in emitting energetic protons, the solar system out-
gassed and inhabited by relatively small solid objects 
(protoplanets or planetesimals) orbiting the protosun 
and being irradiated by it. 

There are two principal differences between the calcu­
lation presented in this paper and the one undertaken 
by FGH: First, they work backward from the presently 
observed isotopic abundances to an inferred "inter­
mediate stage" in the evolution of the solar system. 
Here, we start from several plausible intermediate 
stages and follow the results of the solar proton bom­
bardment forward. Secondly, FGH uses the mean value 
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It is shown that the observed isotopic abundances of Li, Be, and B can be explained by their spallation in 
small, prototerrestrial bodies. Spheres of arbitrary composition and radius are irradiated by protons; ap­
proximate expressions are found for the solar-flare proton spectrum, the spallation cross sections, and neutron 
production. A new approximation is made for the effect of the fast neutrons. I t is then found that the present 
day proton flux is too soft to give the desired results reasonably, and that a mean proton energy of 300 MeV 
is necessary to get the observed isotopic ratios. The results are not sensitive to the composition, and we can 
obtain the measured Li, Be, and B abundances by taking dry silicate spheres of about 140 m for the proto-
asteroidal bodies. In order to obtain the observed D/H ratio from the irradiation, however, it is necessary to 
add 10% H 20. The measured crustal abundances of Li, Be, B lead to different values for D/H and for the de­
pletion of Gd157 for the earth and for asteroids, contrary to observation. These discrepancies disappear if we 
assume that Li, Be, and B have been concentrated tenfold in the earth's crust. The different isotopic ratios 
found for terrestrial and meteoritic material are consistent with this model, and enable us to calculate the 
Li7/Li6 ratios to be expected on the other planets. 


